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The backward energy cascade is modulated by controlling the sign and’
amplitude of the product f(/ps)/Ls. The authors considered a number of
choices. The first is:

1 if hg>0
0 otherwise

fus) = (6102)

This solution makes it possible to cancel out the representation of Lhe
backward cascade completely by forcing the model to be strictly dissipativ
One drawback to this is that the function f is discontinuous, which can
generate numerical problems. A second golution that is continuous consis
in taking:

0 otherwise

. B > .
fllis) = {ILS #  hs=20 (6.103)
One last positive, continuous, upper-bounded solution is of the forin:

L (1 — exp(—IZg)) if Ls>0 o~
Sls) = { 0 otherwise - t (1)

in which v = 10.

Dynamic Similarity Model. A dynamic version of the Lin-Meneveau
Katz model (6.95) was also proposed [200] for which the constant Cy will no
longer be set arbitrarily. To compute this model, we introduce a third leve
of filtering identified by 7. The @ analogous to tensor £™ for this new level
of filtering is expressed:

;) . (6.10

210

Qij = (Wil —

The Germano-Lilly dynamic procedure, based here on the difference:

My = fIg9)Qy — FLS)ILT (6.106)

where
Tgar= QuunSun , (6.107)
1Q115]
yields:
‘Cm]\’fik .
6.108
A= MM (6.108)
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6.4.3 A Bridge Between Scale Similarity and Approximate
Deconvolution Models. Generalized Similarity Models

T'he Bardina model can be interpreted as a particular case of the approximate

deconvolution based models described in Sect. 6.1.
Using the second order differential approximation

- a? 8%¢
POt S

the Bardina model (6.92) is strictly equivalent to the second order gradient
model given by relations (6.13) and (6.14).

It can also be derived using the iterative deconvolution procedure: a
zeroth-order truncasion in {6.27) is used to recover relation (6.88), while
ta first-order expansion is employed to derive (6.89).

The Bardina model then appears as a low-order formal expansion model
for the subgrid tensor. Generalized scale similarity models can then be de-
fined using higher-order truncations for the formal expansion [119]. They are
formulated as

(6.109)

iy = (G *xw)(Gyt ) — (Gt +3), — (Gy' +m); (6.110)

. iwhere G;lk designates the approximate deconvolution operator, defined us-
‘ ing equation (6.9) or equation (6.27).

6.5 Mixed Modeling

 6:5.1 Motivations

T'he structural models based on the scale similarity idea, and the functional
10dels, each have their advantages and dlsadvantages that make the seem

--fcomplementary

— The functional models, generally, correctly take into account the level of
_' the energy transfers between the resolved scales and the subgrid modes.
" However, their prediction of the subgrid tensor structure, i.e. its eigenvec-
_ tors, is very poor.

"The models based on the scale-similarity hypothesis or an approximate
" deconvolution procedure generally predict well the structure of the subgrid
tensor better (and then are able to capture anisotropic effects and dise-
quilibrium), but are less efficient for dealing with the level of the energy
“transfers.
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Tests have shown that they are able to capture disequilibrium and anisot
ropy effects. :
Shao et al. [308] propose a splitting of the kinetic encrgy transfer acros
the cut-off that enlights the role of each one of these two model classes. Thed
authors combine the classical large-eddy simulation convolution filter to th
ensemble average, yielding the following decompositions:

u=(u)+u* . (6.111)
B (6.112
= (W) + () + ' +u” . (6.113

Using this hybrid decomposition, the subgrid tensor splits into

.. — Fapid slow
T'U = Tij + Tij N

with

P = i ag) — () y) + 5] — )
Tl (ug) ~ u (T . (6.116 :
These two parts can be analysed as follows:

— The rapid part explicitly depends on the mean flow. This contribution
arises only if the convolution flter is applied in directions where the mean
How gradients are non-zero. It is referred to as rapid because the time scale
of its response to variations of the mean flow is small. Numerical cxpérll-
ments show that this part plays an important role when the turbulence is in
a desiquilibrium state when: (i) production of kinetic energy is much larg

than dissipation or (i) the filter length is of the same order as the integral -
scale of turbulence. Subgrid stresses anisotropy is observed to be due tothe.
interaction of this rapid part and the mean shear. Numerical simulations

have shown that the rapid part escapes the functional modeling, but scale:
similarity models succeed in representing anisotropic energy transfer (both
forward and hackward cascades) associated to the rapid part,
— The slow part is always present in large-eddy simulation, because it does.
not depend on the mean flow gradients. It corresponds (o the subgrid tensor

analyzed through the previously described canonical analysis. It is referred

to as slow because its relaxation time is long with respect to rapid part.
Numerical tests show that subgrid viscosity model correctly capture the
associated kinetic energy transfer.
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One simple idea for generating subgrid models possessing good qualities

- on both the structural and energy levels is to combine a functional with

a structural model, making what is called mixed models. This is generally
done by combininig a subgrid viscosity model for representing the energy
cascade mechanism with a scale similarity. The stochastic backward cascade
models are nsually not included because the structural models are capable of
including this phenomenon. The resulting form is : '

1 s 1 "
Tij — §Tkk5a'j = —2WegeSy5 + (Li; — §ka‘5£j) , - (6.117)

-where vege is the subgrid viscosity (evaluated using one of the previously

described model), and L;; the evaluation obtained using one of the structural
model2. : '
Examples of such models are described in the following.

6.5.2 Examples of Mixed Models

We present several examples of mixed models here:

1. The Smagorinsky-Bardina model (p.185), for which the respective weights
" of each of the contributions are preset. This model is limited by the
hypotheses underlying each of the two parts constituting it: the subgrid
_viscosity is still based on arguments of the infinite inertial range type.
“Experience shows, though, that combining the two models reduces the
importance of the constraints associated with these underlying hypothe-
ses, which improves the results. '

2. A one-parameter mixed model whose subgrid viscosity is computed by
a dynamic procedure of the Germano-Lilly type (p.186). With this pro-
cedure, the respective weights of the structural and functional parts of
the model can be modified, so that the subgrid viscosity model is now
computed as a complement to the scale similarity model, which allows
a better control of the dissipation induced. It can be said, though, that
this procedure innately prefers the structural part.

;3. The general form of N-parameter dynamic mixed model, as derived by
 Sagaut et al. (p.187). This procedure is an extension of the previous one:
the weights of the different. parts of the model are dynamically computed,
resulting in a possibly better approximation of the true subgrid stresses.
The case of two-parameter dynamic mixed model is emphasized.

Mixed Smagorinsky—Bardina Model. The first example is proposed by
Bardina et al. [13] in the form of a linear combination of the Smagorinsky
model (4.90) and the scale similarity model (6.92). The subgrid tensor devi-

. ator is then written:

i12 Only scale-similarity models or approximate deconvolition models are used in
practice to derive mixed models, because they are very easy to implement.
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Tij — %Tkk&.ﬂ. £ % (_gysgsgij +:Lij 1 i 5ij) ! (6.118.). and where Py, represents the trace of the subgrid tensor. The Germano-Lilly
3 dynamic procedure leads to: ‘
in which o < (@ o)
1 o — Hig)mis
L Cy= M2 F (6.129)
;U i Mg

In simulations performed with this model, the authors abserved a reduc-
tion in the value of the dynamic constant with respect to that predicted by
‘the usual dynamic model (i.e. based on the Smagorinsky model alone). This
can be explained by the fact that the difference between the £™ and H terms -
appears in the numerator of the fraction (6.129) and that this difference
is small because these terms are very similar. This shows that the subgrid
viscosity model serves only to model a residual part of the full subgrid tensor
and not its entirety, as in the usual dynamic model.

Vreman et al. [341] propose a variant of this model. For the sake of
mathematical consistency, by making the model for the tensor Tj; dependent
only on the velocity field that corresponds to the same level of filtering, i.e.
1, these authors propose the following alternate form for the tensor Qi;:

and

Vegs = CsA|3] -~ (6.120)

Variants are obtained either by changing the subgrid viscosity model us
or by replacing the tensor £ with the tensor £™ (6.98) or the tensor £ (6.94).

One-Parameter Mixed Dynamic Model. A mixed dynamic modeling
was proposed by Zang, Street, and Koseff [366]. This is based initially on
the Bardina model coupled with the Smagorinsky model, but the latter
can be replaced by any other subgrid viscosity model. The subgrid viscosity
model constant is computed by a dynathic procedure. The subgrid tensors
corresponding to the two filtering levels are modeled by a mixed model:

o o~

i _ : 8 e
Tij — 3 Tekdiy = ~2WageSiy + L] 1: Y (6.121) Qij = Uil — Wl - (6-130)

“ X N-Parameter Dynamic Mixed Model

1 = 1
Tij = ngkéﬁ = ~2WegsSig + Qij — Egkk A @ 122) Geiieral Formulation and Formal Resolution. A general form of multiparam-
in which eter dynamic model was derived by Sagaut et al. [288]. Considering a formal
N-part parametrization of the subgrid tensor, each term being associated to
Qij = Wty — Uilly (6.123) 2 real constant C, k= 1,..,N ‘ -
and Tii = Z aif;(w48) (6.131)
S : ] I=1,N )
Vogs = CadllS] - ' (6_'124) . where the functions f}; ! are the kernels of the different parts of the complete
The residual E;; is now of the form: 'model The eqmva.lcnt formulatmn obtained at the test filter level is
Byj = L5 — Hij — (—ZC"de'mij + (S.gjp;ck) 3 (6.12I Z Cifz; ﬁ 4) . (6.132)
I=1,N .
in which
Inserting (6.131) and (6.132) into the Germano identity (4.126), we get
Hij = Ty — Tt (6.126) ~ the following definition of the residual E;;:
- Eij = L‘fj Z O’»mzy TTL” = fv,g( ) fif;l ('I.l, A) . (6'133)
LF =T — Uy (6.127) ' I1=1,N

In order to obtain N linearly independent relations to compute the con-
“ stants Cy, a first solution is to operate the contraction of the residual (6.133)
. with N independent tensors A' The constants will then appear as the
‘solutions of the follow linear a,lgebralc problem of rank N:



